Le tissu musculaire et le mécanisme
de la contraction
Il existe trois types de tissu musculaire : lisse, cardiaque et squelettique.
Chaque type est caractérisé par une structure, une fonction et une localisation différentes.
Les fonctions du muscle sont :
• Le mouvement. Les mouvements du corps tels que la marche, la respiration, la parole
ainsi que ceux qui sont associés à la digestion et aux flux liquidiens.
• La production de la chaleur...
• La posture et le soutien du corps
La structure microscopique du muscle
Les cellules musculaires qui ressemblent à de petits filaments sont appelées fibres
musculaires. Chaque fibre squelettique est une cellule striée multinucléée contenant un grand
nombre de myofibrilles cylindriques qui s'étendent sur toute la longueur de la cellule.
Chaque myofibrille est constituée de plus petites unités appelées myofilaments (ou filaments).
Les myofilaments minces sont constitués essentiellement d'une protéine contractile, l'actine,
et les myofilaments épais d'une autre protéine contractile, la myosine
La structure des myofilaments
Les filaments épais.
En forme de club de golf , chaque molécule de myosine est constituée d'un long segment tubulaire et
d'une tête globulaire, la tête de myosine ou pont d'union. La tête de myosine comporte un site de
fixation de l'actine et un site de fixation de l'ATPase. Les segments tubulaires sont accolés les uns aux
autres, leur tête globulaire orientée vers l'extérieur, et ils constituent les filaments épais qui
s'étendent entre les filaments minces .
Les filaments minces
Ces filaments sont composés de protéines, l'actine, la tropomyosine et la troponime. Deux longs brins
d'actine forment le squelette des filaments minces. Les chaines longues et fines de tropomyosine
s'enroulent autour des brins d'actine et masquent les sites de fixation de la myosine sur l'actine. Des
molécules de troponime relient la chaine de tropomyosine à l'hélice d'actine (figure 7.2). Dans les
myofibrilles du muscle squelettique et du muscle cardiaque, les filaments minces et les filaments épais
se chevauchent pour former un pattern particulier appelé sarcomère. Le sarcomère est l'unité
structurale et fonctionnelle d'une myofibrille
Les striations entrecroisées, que l'on observe dans le muscle squelettique et dans le muscle cardiaque,
sont dues à ce pattern d'intercalations régulières des filaments épais et des filaments minces. Les
bandes sombres qui contiennent les filaments épais sont les bandes A. Les bandes plus claires, bandes
I, sont des régions qui contiennent uniquement des filaments minces. Au milieu des bandes I, se
trouvent des zones plus foncées, les stries Z, qui sont les zones de jonction des sarcomères adjacents.
La structure d'une fibre (cellule) musculaire.
Le sarcolemme (membrane cellulaire) de la fibre musculaire délimite le sarcoplasme (cytoplasme). Le
sarcoplasme est traversé par un réseau de saccules membranaires appelé réticulum sarcoplasmique
(endoplasmique) qui s'organise en feuillets autour des myofibrilles. Les saccules longitudinaux du
réticulum sarcoplasmique se terminent par des extensions en cul de sac, les citernes terminales. Les
citernes terminales stockent des ions calcium ( CA2) et jouent un rôle important dans la régulation de
la contraction musculaire. Les tubules traverses (tubules T) sont des prolongements internes du
sarcolemme qui s'étendent perpendiculairement au réticulum sarcoplasmique. Les tubules T passent
par des segments adjacents des citernes terminales et pénètrent en profondeur dans la fibre musculaire
permettant la conduction du potentiel jusqu'ai cœur de cette fibre.
La contraction musculaire.
Dans la théorie de la contraction par glissements des filaments, les myofilaments (minces et épais) des
myofibrilles glissent les uns par rapport aux autres, ce qui provoque le raccourcissement de la fibre
musculaire, avec un mouvement global du muscle de l'insertion vers l'origine. Le mécanisme qui
provoque le glissement des myofilaments minces (d'actine) sur des myofilaments épais (de myosine)
se déroule selon la séquence suivante :
1 La stimulation transmise par l'acétylcholine à travers la jonction neuromusculaire, initie un
potentiel d'action au niveau du sarcolemme de la fibre musculaire. Ce potentiel d'action se propage au
niveau du sarcolemme et est transmis à l'intérieur de la fibre musculaire par les tubules T.
2 Sous l'effet du potentiel d'action les citernes terminales déversent des ions calcium (Ca2+), dans l'environnement immédiat des myofibrilles.
3 Les ions Ca2+, se fixent sur les molécules de troponime associées aux molécules de tropomyosine
sur les filaments minces, ce qui modifie la conformation tridimensionnelle de la triponine. Cette
modification provoque le déplacement de la tropomyosine et démasque les sites de fixation de l'actine
sur la myosine.
4 Les têtes de myosine (pont d'union) se lient à l'actine. Du fait de cette liaison, la tête de
myosine, dans une configuration de haute énergie, subit un changement de conformation qui
provoque son redressement .Le filament d'actine est tiré sur le filament de myosine dans un
mouvement appelé force de traction.
5 Après la traction, la tête de myosine se détache de son site de fixation sur l'actine et de l'ATP se
fixe sur la tête de myosine. L'ATPase de la tête de myosine hydrolyse l'ATP en ADP + énergie :
l'énergie est utilisée pour rétablir une conformation de haute énergie de la tête de myosine. La tête de
myosine peut ainsi se lier à un autre site de fixation de l'actine (s'il est exposé du fait de la préférence
de calcium), ce qui produit une autre traction.
6 La répétition de ces tractions permet de tir er les filaments minces. Ce glissement, selon un
mécanisme de roue à rochet, qui implique l'interaction de nombreux sites de fixation de l'actine et de
têtes de myosine, produit une unique contraction musculaire.
7 Lorsque le potentiel d'action s'interrompt, le calcium (Ca2+) du cytoplasme est ramené par
transport actif dans les citernes terminales du réticulum sarcoplasmique. En absence de calcium, la
troponine reprend sa configuration initiale de sorte que la tropomyosine masque à nouveau les sites de
fixation de la myosine situés sur les filaments minces. Les filaments minces retournent à leur état
initial et le muscle se relâche.
La jonction musculaire
La stimulation d'un neurone provoque la contraction du muscle squelettique. L'espace
compris entre la terminaison axonale d'un neurone moteur et la fibre musculaire est appelé
jonction neuromusculaire
Le potentiel d'action se propage le long d'un neurone moteur jusqu'à la terminaison
axonale ou il provoque un influx d'ions calcium. Les ions calcium agissent sur les
vésicules synaptiques qui libèrent l'acétylcholine qui diffusent à travers la fente
synaptique et se lie à des récepteurs spécifiques situés sur le sarcolemme . Le potentiel
d'action se propage sur tout le sarcolemme et initie la séquence d'événements décrite cidessus.
L'unité motrice.
L'ensemble formé par les ramifications d'un unique neurone moteur et par les fibres des
muscles squelettiques qu'elles innervent, est appelé une unité motrice. Les grosses unités
motrices sont constituées d'un grand nombre de fibres alors que les petites unités en
contiennent un nombre relativement plus restreint. La contraction d'un muscle
squelettique met en jeu plusieurs unités motrices. Des mouvements précis et hautement
coordonnés nécessitent peu d'unités motrices. Lorsqu'une force musculaire importante est
requise, de nombreuses unités motrices sont mises en jeu. La réponse de chacune des
fibres d'une unité motrice à un stimulus électrique, comprend trois phases (figure 7,4) :
1. La période de latence, entre le moment de la stimulation et le début de la contraction.
2. La période de contraction (ou durée de contraction), lorsque le travail musculaire est
réalisé.
3. La période de relâchement, ou de récupération de la fibre musculaire.
Important.
Les différents types de fibres musculaires squelettiques.
Les fibres à contraction rapide : grosse fibres contenant de grandes quantités de
glycogène ; peu de myoglobine (pigment qui fixe l'O2) ; voie anaérobie de production de l'ATP ; fibres fatigables ; forces et rapidité.
Les fibres à contraction lente : petites fibres contenant peu de glycogène, riche en
myoglobine ; voie aérobie de production de l'ATP ; résistantes à la fatigue, endurance.
Les fibres intermédiaires : de taille intermédiaire ; quantité moyenne de myoglobine ;
riches en myoglobine ; production d'TP par les deux types de voies, anaérobie et aérobie.
Secousse musculaire, sommation et tétanos.
Un seul potentiel d'action qui arrive au niveau des fibres musculaires d'une unité motrice
provoque une contraction du muscle, rapide et de courte durée, appelée secousse musculaire
Si une succession rapide de stimuli est appliqué au niveau des fibres de plusieurs unités
motrices d'un muscle, une secousse musculaire n'est pas achevée avant que la suivante ne
commence.
Puisque le muscle est déjà partiellement contracté lorsque la deuxième secousse musculaire
débute, le raccourcissement du muscle au cours de la deuxième contraction sera légèrement
plus important qu'il ne l'est lors d'une seule secousse musculaire. On appelle sommation ce
léger raccourcissement musculaire supplémentaire dû à la succession rapide de deux ou
plusieurs potentiels d'action. Pour des fréquences rapides de stimulation, l es secousses qui se
chevauchent s'additionnent en une contraction unique, forte et soutenue, que l'on appelle un
tétanos.
La structure macroscopique du muscle.
Le tissu musculaire squelettique et le tissu conjonctif associé sont organisés en faisceaux
musculaires. Cette architecture détermine la force et le sens de contraction des fibres
musculaires. On distingue les fibres parallèles, convergentes, pennées (en forme de plumes)
ou circulaires des sphincters.
Les trois gaines de tissu conjonctif lâche de type fibreux que l'on trouve à différents niveaux
du muscle permettent d'uniformiser la force de contraction. L'endomésyum est le tissu
conjonctif qui entoure chaque fibre musculaire.
Le périmysium entoure plusieurs fibres musculaires pour constituer un faisceau. Un muscle
est formé de nombreux faisceaux. Chaque muscle est enveloppé par l'épimysium. Ces trois
tissus conjonctifs sont en continuité avec le tendon qui assure la fixation du muscle de l'os.
Un muscle est attaché au squelette à deux niveaux. L'origine est le point d'attachement le
moins mobile du muscle ; l'insertion est le point le plus mobile. L'origine est généralement en
position proximale par rapport à l'articulation, et l'insertion en position distale
• SAVOIR.
La différence entre les fibres musculaires, les myofibrilles et les myofilaments.
Le mécanisme de contraction musculaire et l'importance des ions Ca2+et de l'ATP dans ce processus.
L'organisation et le rôle des muscles squelettiques ; les unités motrices , les différents types
de fibres , les différents types de contraction et la structure macroscopique des muscles.
Aucun commentaire:
Enregistrer un commentaire